with get_openai_callback() as cb:는 Python의 컨텍스트 관리자(context manager)를 사용하여 get_openai_callback 함수가 반환하는 객체(cb)를 생성하고, 그 객체를 사용하는 블록을 정의하는 구문입니다. 이 구문을 이해하기 위해서는 Python의 컨텍스트 관리자가 어떻게 작동하는지와 get_openai_callback이 어떤 역할을 하는지를 아는 것이 중요합니다.
1. 컨텍스트 관리자 (Context Manager)
컨텍스트 관리자는 with 블록의 시작과 종료 시 특정 코드를 자동으로 실행하게 해줍니다. 일반적으로, 컨텍스트 관리자는 자원(resource)을 할당하고 해제하는 작업에 사용됩니다. 예를 들어, 파일을 열고 작업을 한 후 자동으로 파일을 닫는 데 사용할 수 있습니다.
•__enter__(): with 블록이 시작될 때 호출됩니다. 이 메서드는 일반적으로 어떤 자원을 할당하거나 초기화합니다.
•__exit__(): with 블록이 끝날 때 호출됩니다. 이 메서드는 자원을 해제하거나, 예외가 발생했을 때 이를 처리합니다.
2. get_openai_callback의 역할
get_openai_callback은 OpenAI API 호출과 관련된 메트릭을 수집하는 콜백 객체를 반환합니다. 이 콜백 객체는 컨텍스트 관리자에서 사용될 때 API 호출 동안의 토큰 사용량, 비용 등을 추적합니다.
3. with get_openai_callback() as cb:의 의미
•get_openai_callback()은 컨텍스트 관리자 역할을 하는 객체를 반환합니다.
•with 블록이 시작되면, cb 변수에 이 객체가 할당됩니다.
•with 블록 내에서 OpenAI API 호출이 이루어지면, cb 객체는 API 호출 관련 데이터를 수집합니다.
•with 블록이 종료되면, cb 객체는 수집한 데이터를 자동으로 정리하고, 필요한 경우 자원을 해제합니다.
예시 코드 분석
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
llm = OpenAI(model="text-davinci-003")
with get_openai_callback() as cb:
response = llm("What is the capital of France?")
print(response)
print(f"Total Tokens: {cb.total_tokens}")
print(f"Total Cost: {cb.total_cost}")
•get_openai_callback(): 콜백 객체를 생성하여 반환합니다.
•with ... as cb:: cb 변수에 콜백 객체를 할당하고, with 블록 내에서 이 객체를 사용합니다.
•cb.total_tokens, cb.total_cost: with 블록이 끝난 후, API 호출 동안 사용된 총 토큰 수와 총 비용을 출력합니다.
이 구문을 사용함으로써 개발자는 OpenAI API 호출의 성능을 모니터링하고 리소스 사용량을 효율적으로 관리할 수 있습니다.
get_openai_callback
소스: langchain_community/callbacks/manager.py
from contextlib import contextmanager
@contextmanager
def get_openai_callback() -> Generator[OpenAICallbackHandler, None, None]:
"""Get the OpenAI callback handler in a context manager.
which conveniently exposes token and cost information.
Returns:
OpenAICallbackHandler: The OpenAI callback handler.
Example:
>>> with get_openai_callback() as cb:
... # Use the OpenAI callback handler
"""
cb = OpenAICallbackHandler()
openai_callback_var.set(cb)
yield cb
openai_callback_var.set(None)
Pydantic은 Python에서 데이터 유효성 검사 및 설정 관리를 위한 라이브러리입니다. 주로 FastAPI와 같은 웹 프레임워크와 함께 사용되며, 데이터를 구조화하고 검증하는 데 유용합니다. BaseModel은 Pydantic의 핵심 클래스 중 하나로, 데이터 모델을 정의하는 데 사용됩니다.
Pydantic의 주요 기능
1.유효성 검사 및 변환: 필드에 대해 타입을 지정하면, 입력 데이터가 자동으로 그 타입으로 변환되며, 유효성 검사가 수행됩니다.
2.자동 완성 및 타입 힌팅 지원: IDE의 자동 완성과 타입 힌팅을 통해 개발 생산성을 높입니다.
3.데이터 직렬화 및 역직렬화: 모델 인스턴스를 JSON으로 직렬화하거나 JSON으로부터 역직렬화할 수 있습니다.
4.데이터 검증 오류 관리: 잘못된 데이터를 입력하면, Pydantic이 자동으로 유효성 검사 오류를 생성합니다.
BaseModel 사용 예시
다음은 Pydantic의 BaseModel을 사용하여 간단한 사용자 데이터를 관리하는 예제입니다.
from pydantic import BaseModel, EmailStr, Field
from typing import Optional
class User(BaseModel):
id: int
name: str = Field(..., min_length=3, max_length=50)
email: EmailStr
age: Optional[int] = Field(None, ge=18)
is_active: bool = True
# Example usage
user_data = {
"id": 1,
"name": "John Doe",
"email": "johndoe@example.com",
"age": 25,
}
user = User(**user_data)
print(user)
print(user.dict())
코드 설명
1.필드 정의:
•id: 정수형 필드.
•name: 길이가 3에서 50 사이인 문자열 필드.
•email: 이메일 형식의 문자열을 요구하는 필드. EmailStr 타입은 이메일 주소가 올바른 형식인지 검증합니다.
•age: 선택적 필드로, 값이 주어지면 18 이상이어야 합니다.
•is_active: 기본값이 True인 불리언 필드.
2.필드 유효성 검사:
•Field를 사용하여 각 필드에 대한 추가적인 제약 조건을 지정합니다.
3.데이터 생성 및 출력:
•user_data 딕셔너리를 통해 User 객체를 생성합니다. 생성된 객체를 출력하거나, .dict() 메서드를 사용하여 객체를 딕셔너리 형태로 변환할 수 있습니다.
이와 같이 Pydantic을 사용하면 데이터 모델을 간단하고 명확하게 정의할 수 있으며, 자동으로 타입 변환과 유효성 검사를 수행할 수 있습니다. 이를 통해 데이터 처리의 신뢰성과 안정성을 높일 수 있습니다.
BaseModel은 자동으로 __init__ 을 실행
Pydantic의 BaseModel을 사용하면 클래스 수준에서 필드를 정의할 수 있으며, 이러한 필드는 마치 __init__ 메서드에서 self.name과 같이 인스턴스 변수로 설정된 것처럼 동작합니다. Pydantic은 이러한 필드를 기반으로 자동으로 __init__ 메서드를 생성하고, 필드에 대한 타입 검사를 수행합니다.
이 방식은 일반적인 Python 클래스에서의 인스턴스 변수 설정과는 약간 다릅니다. 일반 Python 클래스에서는 인스턴스 변수를 __init__ 메서드 내에서 self를 통해 설정해야 하지만, Pydantic의 BaseModel을 사용하면 클래스 정의 시 필드의 타입과 기본값을 지정하여 더 간결하고 명확하게 모델을 정의할 수 있습니다.
예시 비교
일반 Python 클래스
class User:
def __init__(self, id: int, name: str, email: str, age: int, is_active: bool = True):
self.id = id
self.name = name
self.email = email
self.age = age
self.is_active = is_active
Pydantic BaseModel
from pydantic import BaseModel, EmailStr, Field
from typing import Optional
class User(BaseModel):
id: int
name: str = Field(..., min_length=3, max_length=50)
email: EmailStr
age: Optional[int] = Field(None, ge=18)
is_active: bool = True
차이점 설명
•일반 클래스에서는 __init__ 메서드 내에서 self를 사용하여 인스턴스 변수를 직접 설정합니다.
•Pydantic BaseModel에서는 클래스 정의 시 필드를 직접 설정하고, Pydantic이 자동으로 __init__ 메서드를 생성하여 필드 초기화, 타입 검사, 유효성 검사를 수행합니다.
이렇게 Pydantic의 BaseModel을 사용하면 코드가 더 간결해지며, 데이터 유효성 검사가 자동으로 처리되므로 안전하고 유지보수하기 쉬운 코드를 작성할 수 있습니다.
- Model 생성시 configurable_fileds 사설정 -> Model 인스턴스 with_config 런타임 설정
class RunnableSerializable(Serializable, Runnable[Input, Output]):
"""Runnable that can be serialized to JSON."""
def configurable_fields(
self, **kwargs: AnyConfigurableField
) -> RunnableSerializable[Input, Output]:
"""Configure particular Runnable fields at runtime.
Args:
**kwargs: A dictionary of ConfigurableField instances to configure.
Returns:
A new Runnable with the fields configured.
.. code-block:: python
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print(
"max_tokens_20: ",
model.invoke("tell me something about chess").content
)
# max_tokens = 200
print("max_tokens_200: ", model.with_config(
configurable={"output_token_number": 200}
).invoke("tell me something about chess").content
)
"""
from langchain_core.runnables.configurable import RunnableConfigurableFields
for key in kwargs:
if key not in self.__fields__:
raise ValueError(
f"Configuration key {key} not found in {self}: "
f"available keys are {self.__fields__.keys()}"
)
return RunnableConfigurableFields(default=self, fields=kwargs)
class Runnable(Generic[Input, Output], ABC):
... 중략 ...
def with_config(
self,
config: Optional[RunnableConfig] = None,
# Sadly Unpack is not well-supported by mypy so this will have to be untyped
**kwargs: Any,
) -> Runnable[Input, Output]:
"""
Bind config to a Runnable, returning a new Runnable.
Args:
config: The config to bind to the Runnable.
kwargs: Additional keyword arguments to pass to the Runnable.
Returns:
A new Runnable with the config bound.
"""
return RunnableBinding(
bound=self,
config=cast(
RunnableConfig,
{**(config or {}), **kwargs},
), # type: ignore[misc]
kwargs={},
)
실제 예제
- Model 생성시 ConfigurableField 통해 설정
- model 인스턴스 사용시 with_config 통해 설정
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(temperature=0).configurable_fields(
temperature=ConfigurableField(
id="llm_temperature",
name="LLM Temperature",
description="The temperature of the LLM",
)
)
//--- case-1
model.invoke("pick a random number")
// 결과
AIMessage(content='17', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 11, 'total_tokens': 12}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-ba26a0da-0a69-4533-ab7f-21178a73d303-0')
//--- case-2
model.with_config(configurable={"llm_temperature": 0.9}).invoke("pick a random number")
// 결과
AIMessage(content='12', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 11, 'total_tokens': 12}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-ba8422ad-be77-4cb1-ac45-ad0aae74e3d9-0')
//--- case-3
prompt = PromptTemplate.from_template("Pick a random number above {x}")
chain = prompt | model
chain.invoke({"x": 0})
// 결과
AIMessage(content='27', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 14, 'total_tokens': 15}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-ecd4cadd-1b72-4f92-b9a0-15e08091f537-0')
//--- case-4
chain.with_config(configurable={"llm_temperature": 0.9}).invoke({"x": 0})
// 결과
AIMessage(content='35', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 14, 'total_tokens': 15}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-a916602b-3460-46d3-a4a8-7c926ec747c0-0')
configurable_alternatives 메서드 이해
Chain에 연결할 Runnable을 교체할 수 있게 한다.
class RunnableSerializable(Serializable, Runnable[Input, Output]):
... 중략 ...
def configurable_alternatives(
self,
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]],
) -> RunnableSerializable[Input, Output]:
"""Configure alternatives for Runnables that can be set at runtime.
Args:
which: The ConfigurableField instance that will be used to select the
alternative.
default_key: The default key to use if no alternative is selected.
Defaults to "default".
prefix_keys: Whether to prefix the keys with the ConfigurableField id.
Defaults to False.
**kwargs: A dictionary of keys to Runnable instances or callables that
return Runnable instances.
Returns:
A new Runnable with the alternatives configured.
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI()
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(
configurable={"llm": "openai"}
).invoke("which organization created you?").content
)
"""
from langchain_core.runnables.configurable import (
RunnableConfigurableAlternatives,
)
return RunnableConfigurableAlternatives(
which=which,
default=self,
alternatives=kwargs,
default_key=default_key,
prefix_keys=prefix_keys,
)
실제 예제
- Anthropic 모델 생성시, OpenAI 모델을 alternative로 설정한다.
- 상황에 따라 OpenAI 모델을 사용한다.
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
llm = ChatAnthropic(
model="claude-3-haiku-20240307", temperature=0
).configurable_alternatives(
# This gives this field an id
# When configuring the end runnable, we can then use this id to configure this field
ConfigurableField(id="llm"),
# This sets a default_key.
# If we specify this key, the default LLM (ChatAnthropic initialized above) will be used
default_key="anthropic",
# This adds a new option, with name `openai` that is equal to `ChatOpenAI()`
openai=ChatOpenAI(),
# This adds a new option, with name `gpt4` that is equal to `ChatOpenAI(model="gpt-4")`
gpt4=ChatOpenAI(model="gpt-4"),
# You can add more configuration options here
)
prompt = PromptTemplate.from_template("Tell me a joke about {topic}")
chain = prompt | llm
//--- case-1
# By default it will call Anthropic
chain.invoke({"topic": "bears"})
// 결과
AIMessage(content="Here's a bear joke for you:\n\nWhy don't bears wear socks? \nBecause they have bear feet!\n\nHow's that? I tried to come up with a simple, silly pun-based joke about bears. Puns and wordplay are a common way to create humorous bear jokes. Let me know if you'd like to hear another one!", response_metadata={'id': 'msg_018edUHh5fUbWdiimhrC3dZD', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 13, 'output_tokens': 80}}, id='run-775bc58c-28d7-4e6b-a268-48fa6661f02f-0')
//--- case-2
# We can use `.with_config(configurable={"llm": "openai"})` to specify an llm to use
chain.with_config(configurable={"llm": "openai"}).invoke({"topic": "bears"})
// 결과
AIMessage(content="Why don't bears like fast food?\n\nBecause they can't catch it!", response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 13, 'total_tokens': 28}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-7bdaa992-19c9-4f0d-9a0c-1f326bc992d4-0')
//--- case-3
# If we use the `default_key` then it uses the default
chain.with_config(configurable={"llm": "anthropic"}).invoke({"topic": "bears"})
// 결과
AIMessage(content="Here's a bear joke for you:\n\nWhy don't bears wear socks? \nBecause they have bear feet!\n\nHow's that? I tried to come up with a simple, silly pun-based joke about bears. Puns and wordplay are a common way to create humorous bear jokes. Let me know if you'd like to hear another one!", response_metadata={'id': 'msg_01BZvbmnEPGBtcxRWETCHkct', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 13, 'output_tokens': 80}}, id='run-59b6ee44-a1cd-41b8-a026-28ee67cdd718-0')
class Runnable(Generic[Input, Output], ABC):
... 중략 ...
def bind(self, **kwargs: Any) -> Runnable[Input, Output]:
"""
Bind arguments to a Runnable, returning a new Runnable.
Useful when a Runnable in a chain requires an argument that is not
in the output of the previous Runnable or included in the user input.
Args:
kwargs: The arguments to bind to the Runnable.
Returns:
A new Runnable with the arguments bound.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
llm = ChatOllama(model='llama2')
# Without bind.
chain = (
llm
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind.
chain = (
llm.bind(stop=["three"])
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
"""
return RunnableBinding(bound=self, kwargs=kwargs, config={})
- bind: Bind kwargs to pass to the underlying Runnable when running it. - with_config: Bind config to pass to the underlying Runnable when running it. - with_listeners: Bind lifecycle listeners to the underlying Runnable. - with_types: Override the input and output types of the underlying Runnable. - with_retry: Bind a retry policy to the underlying Runnable. - with_fallbacks: Bind a fallback policy to the underlying Runnable.
class RunnableBinding(RunnableBindingBase[Input, Output]):
"""Wrap a Runnable with additional functionality.
A RunnableBinding can be thought of as a "runnable decorator" that
preserves the essential features of Runnable; i.e., batching, streaming,
and async support, while adding additional functionality.
Any class that inherits from Runnable can be bound to a `RunnableBinding`.
Runnables expose a standard set of methods for creating `RunnableBindings`
or sub-classes of `RunnableBindings` (e.g., `RunnableRetry`,
`RunnableWithFallbacks`) that add additional functionality.
These methods include:
- `bind`: Bind kwargs to pass to the underlying Runnable when running it.
- `with_config`: Bind config to pass to the underlying Runnable when running it.
- `with_listeners`: Bind lifecycle listeners to the underlying Runnable.
- `with_types`: Override the input and output types of the underlying Runnable.
- `with_retry`: Bind a retry policy to the underlying Runnable.
- `with_fallbacks`: Bind a fallback policy to the underlying Runnable.
Example:
`bind`: Bind kwargs to pass to the underlying Runnable when running it.
.. code-block:: python
# Create a Runnable binding that invokes the ChatModel with the
# additional kwarg `stop=['-']` when running it.
from langchain_community.chat_models import ChatOpenAI
model = ChatOpenAI()
model.invoke('Say "Parrot-MAGIC"', stop=['-']) # Should return `Parrot`
# Using it the easy way via `bind` method which returns a new
# RunnableBinding
runnable_binding = model.bind(stop=['-'])
runnable_binding.invoke('Say "Parrot-MAGIC"') # Should return `Parrot`
Can also be done by instantiating a RunnableBinding directly (not recommended):
.. code-block:: python
from langchain_core.runnables import RunnableBinding
runnable_binding = RunnableBinding(
bound=model,
kwargs={'stop': ['-']} # <-- Note the additional kwargs
)
runnable_binding.invoke('Say "Parrot-MAGIC"') # Should return `Parrot`
"""
RAG 구성시에 마지막 chain을 만들 때 retriever를 설정할 때 RunnableParallel을 사용한다.
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
# The prompt expects input with keys for "context" and "question"
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
retrieval_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
// 아래 3가지의 사용방식은 동일한다.
// ref: https://python.langchain.com/v0.2/docs/how_to/parallel/
// {"context": retriever, "question": RunnablePassthrough()}
// RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
// RunnableParallel(context=retriever, question=runnablePassthrough())
retrieval_chain.invoke("where did harrison work?")
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_openai import ChatOpenAI
model = ChatOpenAI()
joke_chain = ChatPromptTemplate.from_template("tell me a joke about {topic}") | model
poem_chain = (
ChatPromptTemplate.from_template("write a 2-line poem about {topic}") | model
)
map_chain = RunnableParallel(joke=joke_chain, poem=poem_chain)
map_chain.invoke({"topic": "bear"})
// 결과
{'joke': AIMessage(content="Why don't bears like fast food? Because they can't catch it!", response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 13, 'total_tokens': 28}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'stop', 'logprobs': None}, id='run-fe024170-c251-4b7a-bfd4-64a3737c67f2-0'),
'poem': AIMessage(content='In the quiet of the forest, the bear roams free\nMajestic and wild, a sight to see.', response_metadata={'token_usage': {'completion_tokens': 24, 'prompt_tokens': 15, 'total_tokens': 39}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-2707913e-a743-4101-b6ec-840df4568a76-0')}
class RunnablePassthrough(RunnableSerializable[Other, Other]):
... 중략 ...
@classmethod
def assign(
cls,
**kwargs: Union[
Runnable[Dict[str, Any], Any],
Callable[[Dict[str, Any]], Any],
Mapping[
str,
Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]],
],
],
) -> "RunnableAssign":
"""Merge the Dict input with the output produced by the mapping argument.
Args:
**kwargs: Runnable, Callable or a Mapping from keys to Runnables
or Callables.
Returns:
A Runnable that merges the Dict input with the output produced by the
mapping argument.
"""
return RunnableAssign(RunnableParallel(kwargs))
from operator import itemgetter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable, RunnablePassthrough, chain
contextualize_instructions = """Convert the latest user question into a standalone question given the chat history. Don't answer the question, return the question and nothing else (no descriptive text)."""
contextualize_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_instructions),
("placeholder", "{chat_history}"),
("human", "{question}"),
]
)
contextualize_question = contextualize_prompt | llm | StrOutputParser()
qa_instructions = (
"""Answer the user question given the following context:\n\n{context}."""
)
qa_prompt = ChatPromptTemplate.from_messages(
[("system", qa_instructions), ("human", "{question}")]
)
@chain
def contextualize_if_needed(input_: dict) -> Runnable:
if input_.get("chat_history"):
# NOTE: This is returning another Runnable, not an actual output.
return contextualize_question
else:
return RunnablePassthrough() | itemgetter("question")
@chain
def fake_retriever(input_: dict) -> str:
return "egypt's population in 2024 is about 111 million"
full_chain = (
RunnablePassthrough.assign(question=contextualize_if_needed).assign(
context=fake_retriever
)
| qa_prompt
| llm
| StrOutputParser()
)
full_chain.invoke(
{
"question": "what about egypt",
"chat_history": [
("human", "what's the population of indonesia"),
("ai", "about 276 million"),
],
}
)
// 결과
"According to the context provided, Egypt's population in 2024 is estimated to be about 111 million."
Custom Function을 Runnable로 사용하기 - @chain == RunnableLambda
chaining 시에 custom function은 RunnableLambda 를 사용하거나, @chain 데코레이터를 사용한다.
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import chain
prompt1 = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
prompt2 = ChatPromptTemplate.from_template("What is the subject of this joke: {joke}")
@chain
def custom_chain(text):
prompt_val1 = prompt1.invoke({"topic": text})
output1 = ChatOpenAI().invoke(prompt_val1)
parsed_output1 = StrOutputParser().invoke(output1)
chain2 = prompt2 | ChatOpenAI() | StrOutputParser()
return chain2.invoke({"joke": parsed_output1})
custom_chain.invoke("bears")
// 결과
'The subject of the joke is the bear and his girlfriend.'
def chain(
func: Union[
Callable[[Input], Output],
Callable[[Input], Iterator[Output]],
Callable[[Input], Coroutine[Any, Any, Output]],
Callable[[Input], AsyncIterator[Output]],
],
) -> Runnable[Input, Output]:
"""Decorate a function to make it a Runnable.
Sets the name of the Runnable to the name of the function.
Any runnables called by the function will be traced as dependencies.
Args:
func: A callable.
Returns:
A Runnable.
Example:
.. code-block:: python
from langchain_core.runnables import chain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
@chain
def my_func(fields):
prompt = PromptTemplate("Hello, {name}!")
llm = OpenAI()
formatted = prompt.invoke(**fields)
for chunk in llm.stream(formatted):
yield chunk
"""
return RunnableLambda(func)
또는 | 오프레이터를 통해 자동 RunnableLambda를 적용할 수 있다.
prompt = ChatPromptTemplate.from_template("tell me a story about {topic}")
model = ChatOpenAI()
chain_with_coerced_function = prompt | model | (lambda x: x.content[:5])
chain_with_coerced_function.invoke({"topic": "bears"})
// 결과
'Once '
- invoke: abstractmethod로 반드시 구현해야 한다. call the chain on an input (ainvoke)
- stream: stream back chunks of the response (astream)
- batch: call the chain on a list of inputs (abatch)
invoke의 Input, Output 타입은 Generic으로 구현체의 타입을 따른다. 현재 Runnable의 invoke로 호출된 Output은 다음 Runnable의 Input 값이 된다.
class Runnable(Generic[Input, Output], ABC):
@abstractmethod
def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output:
"""Transform a single input into an output. Override to implement.
Args:
input: The input to the Runnable.
config: A config to use when invoking the Runnable.
The config supports standard keys like 'tags', 'metadata' for tracing
purposes, 'max_concurrency' for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns:
The output of the Runnable.
"""
Generic[Input, Output] 의 타입표이고, LangChain의 컴포넌트들이 Runable을 상속받고 있다.
Runnable 체인의 연결은 pipe operatore( | ) 또는 Runnable의 .pipe() 메서드를 사용한다. 이는 마치 RxJS의 pipe 연결과 유사하다.
파이썬은 클래스 인스턴스를 + 기호로 쓸 수 있다. 이때 클래스의 __add__ 를 구현한다. 마찬가지로 | 기호를 사용하기 위해서 __or__ 와 __ror__ 을 구현하고 있다.
// a | b -> a.__or__(b)
def __or__(
self,
other: Union[
Runnable[Any, Other],
Callable[[Any], Other],
Callable[[Iterator[Any]], Iterator[Other]],
Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]],
],
) -> RunnableSerializable[Input, Other]:
"""Compose this Runnable with another object to create a RunnableSequence."""
return RunnableSequence(self, coerce_to_runnable(other))
// a | b (if not working) -> b.__ror_(a)
def __ror__(
self,
other: Union[
Runnable[Other, Any],
Callable[[Other], Any],
Callable[[Iterator[Other]], Iterator[Any]],
Mapping[str, Union[Runnable[Other, Any], Callable[[Other], Any], Any]],
],
) -> RunnableSerializable[Other, Output]:
"""Compose this Runnable with another object to create a RunnableSequence."""
return RunnableSequence(coerce_to_runnable(other), self)
// 끝에 dictionary 타입을 Runnable로 만들어 준다.
def coerce_to_runnable(thing: RunnableLike) -> Runnable[Input, Output]:
"""Coerce a Runnable-like object into a Runnable.
Args:
thing: A Runnable-like object.
Returns:
A Runnable.
Raises:
TypeError: If the object is not Runnable-like.
"""
if isinstance(thing, Runnable):
return thing
elif is_async_generator(thing) or inspect.isgeneratorfunction(thing):
return RunnableGenerator(thing)
elif callable(thing):
return RunnableLambda(cast(Callable[[Input], Output], thing))
elif isinstance(thing, dict):
return cast(Runnable[Input, Output], RunnableParallel(thing))
else:
raise TypeError(
f"Expected a Runnable, callable or dict."
f"Instead got an unsupported type: {type(thing)}"
)
이 코드에서 정의된 __or__ 메서드는 Python의 특수 메서드 중 하나로, 비트 연산자 | 를 오버로딩하여 객체 간의 조합을 가능하게 합니다. 이 메서드는 RunnableSerializable 클래스에 정의되어 있으며, 이 클래스의 인스턴스를 다른 객체와 조합하여 새로운 RunnableSequence를 생성합니다.
__or__ 메서드의 의미와 역할
1. __or__ 메서드 오버로딩
이 메서드는 | 연산자를 사용했을 때 호출됩니다. 예를 들어, a | b와 같이 사용할 때, a.__or__(b)가 호출됩니다.
from langchain_core.runnables import RunnableParallel
composed_chain_with_pipe = (
RunnableParallel({"joke": chain})
.pipe(analysis_prompt)
.pipe(model)
.pipe(StrOutputParser())
)
composed_chain_with_pipe.invoke({"topic": "battlestar galactica"})
// 결과
"I cannot reproduce any copyrighted material verbatim, but I can try to analyze the humor in the joke you provided without quoting it directly.\n\nThe joke plays on the idea that the Cylon raiders, who are the antagonists in the Battlestar Galactica universe, failed to locate the human survivors after attacking their home planets (the Twelve Colonies) due to using an outdated and poorly performing operating system (Windows Vista) for their targeting systems.\n\nThe humor stems from the juxtaposition of a futuristic science fiction setting with a relatable real-world frustration – the use of buggy, slow, or unreliable software or technology. It pokes fun at the perceived inadequacies of Windows Vista, which was widely criticized for its performance issues and other problems when it was released.\n\nBy attributing the Cylons' failure to locate the humans to their use of Vista, the joke creates an amusing and unexpected connection between a fictional advanced race of robots and a familiar technological annoyance experienced by many people in the real world.\n\nOverall, the joke relies on incongruity and relatability to generate humor, but without reproducing any copyrighted material directly."
// 또는 일렇게 사용도 가능하다.
composed_chain_with_pipe = RunnableParallel({"joke": chain}).pipe(
analysis_prompt, model, StrOutputParser()
)
파이프 예제 및 Runnable 구현체들
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
// model runnable
model = ChatOpenAI(model="gpt-4o-mini")
// prompt runnable
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
// output parser runnable
chain = prompt | model | StrOutputParser()
chain.invoke({"topic": "bears"})
// 결과
"Here's a bear joke for you:\n\nWhy did the bear dissolve in water?\nBecause it was a polar bear!"
Runnable 구현체들은 langchain_core.runnables 폴더의 base.py에 구현되어 있다.
- RunnableSerializable : Serialize 는 보통 파일, 네트워크 전송을 가능하게 한다. 여기서는 json 으로 serialization이 가능하다.
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
def mul_three(x: int) -> int:
return x * 3
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
runnable_3 = RunnableLambda(mul_three)
sequence = runnable_1 | { # this dict is coerced to a RunnableParallel
"mul_two": runnable_2,
"mul_three": runnable_3,
}
# Or equivalently:
# sequence = runnable_1 | RunnableParallel(
# {"mul_two": runnable_2, "mul_three": runnable_3}
# )
# Also equivalently:
# sequence = runnable_1 | RunnableParallel(
# mul_two=runnable_2,
# mul_three=runnable_3,
# )
sequence.invoke(1)
await sequence.ainvoke(1)
// 결과
{'mul_two': 4, 'mul_three': 6}
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
// 결과
[{'mul_two': 4, 'mul_three': 6},
{'mul_two': 6, 'mul_three': 9},
{'mul_two': 8, 'mul_three': 12}]
LLM 호출 RunnableParallel 예제
from langchain_core.output_parsers import StrOutputParser
analysis_prompt = ChatPromptTemplate.from_template("is this a funny joke? {joke}")
composed_chain = {"joke": chain} | analysis_prompt | model | StrOutputParser()
// RunnableParallel 로 전환된다.
composed_chain.invoke({"topic": "bears"})
// 결과
'Haha, that\'s a clever play on words! Using "polar" to imply the bear dissolved or became polar/polarized when put in water. Not the most hilarious joke ever, but it has a cute, groan-worthy pun that makes it mildly amusing. I appreciate a good pun or wordplay joke.'
chain 의 output 을 lambda 의 input으로 받아 dictionary 를 만들어 체인을 구성할 수도 있다.
composed_chain_with_lambda = (
chain
| (lambda input: {"joke": input})
| analysis_prompt
| model
| StrOutputParser()
)
composed_chain_with_lambda.invoke({"topic": "beets"})
// 결과
"Haha, that's a cute and punny joke! I like how it plays on the idea of beets blushing or turning red like someone blushing. Food puns can be quite amusing. While not a total knee-slapper, it's a light-hearted, groan-worthy dad joke that would make me chuckle and shake my head. Simple vegetable humor!"
from typing import Any, AsyncIterator, Iterator
from langchain_core.runnables import RunnableGenerator
def gen(input: Iterator[Any]) -> Iterator[str]:
for token in ["Have", " a", " nice", " day"]:
yield token
runnable = RunnableGenerator(gen)
runnable.invoke(None) # "Have a nice day"
list(runnable.stream(None)) # ["Have", " a", " nice", " day"]
runnable.batch([None, None]) # ["Have a nice day", "Have a nice day"]
# Async version:
async def agen(input: AsyncIterator[Any]) -> AsyncIterator[str]:
for token in ["Have", " a", " nice", " day"]:
yield token
runnable = RunnableGenerator(agen)
await runnable.ainvoke(None) # "Have a nice day"
[p async for p in runnable.astream(None)] # ["Have", " a", " nice", " day"]
- 그외 RunnableEachBase, RunableEach, RunnableBindingBase, RunnableBinding
모든 Runnable은 input 과 output schema를 노출한다.
- input_schema: input pydantic model
- output_schema: output pydantic model
예제는 주로 invoke, ainvoke를 한번에 output을 받는 것이고, LLM을 통해 응답을 받을때는 UX개선을 위하 stream으로 받아 처리한다. Runnable stream 처리에 대한 다양한 접근법은 공식문서를 참조한다.
Runnable 개념 정리
LangChain Runnable과 LangChain Expression Language (LCEL)은 LLM(대형 언어 모델)의 기능을 활용하여 견고한 프로덕션 수준의 프로그램을 만들 수 있는 강력한 도구입니다. 다음은 이들의 동작 방식과 중요성에 대한 개요입니다.
LangChain Runnable
LangChain Runnable은 실행할 수 있는 작업이나 기능을 캡슐화한 개념으로, 일반적으로 일련의 계산 단계를 나타냅니다. Runnable은 LangChain에서 복잡한 워크플로우 또는 체인을 구성할 수 있는 기본 구성 요소입니다. 각 Runnable은 유연하게 설계되어 동기, 비동기, 배치, 스트리밍 작업을 처리할 수 있습니다.
LangChain Expression Language (LCEL)
LangChain Expression Language (LCEL)은 이러한 워크플로우 또는 프로그램을 구성할 수 있는 선언적 언어입니다. LCEL을 사용하면 여러 Runnable을 명확하고 구조적인 방식으로 결합할 수 있습니다. LCEL을 통해 복잡한 작업 체인을 정의하고 여러 Runnable을 하나의 프로그램으로 결합할 수 있습니다.
LCEL과 Runnables의 주요 기능
동기 작업: 전통적인 차단 작업으로, 각 단계가 완료된 후 다음 단계로 이동합니다.
비동기 작업: 차단되지 않는 작업으로, 특정 작업이 완료되기를 기다리는 동안 프로그램이 다른 작업을 처리할 수 있습니다. 이는 서버 환경에서 여러 요청을 동시에 처리할 때 특히 중요합니다.
배치 처리: 여러 입력을 동시에 처리할 수 있는 기능입니다. 대량의 데이터를 처리하거나 여러 사용자의 쿼리를 동시에 처리할 때 유용합니다.
스트리밍: 중간 결과가 생성됨에 따라 이를 스트리밍할 수 있는 기능으로, 사용자 경험을 개선할 수 있습니다. 예를 들어, LLM으로 텍스트를 생성할 때 전체 텍스트가 생성되기 전에 부분적인 응답을 사용자에게 스트리밍할 수 있습니다.
사용 예시
배치 처리: LLM을 통해 고객 쿼리 데이터를 분류해야 하는 시나리오를 상상해 보십시오. LCEL과 Runnables을 사용하여 이 쿼리들을 배치 처리하고 병렬로 처리할 수 있어 작업 속도가 크게 향상됩니다.
비동기 작업: 여러 클라이언트 요청을 처리하는 웹 서버에서 LCEL을 사용하여 이러한 요청을 비동기로 관리함으로써, 서버가 여러 트래픽을 동시에 처리할 수 있게 합니다.
스트리밍 결과: 실시간으로 사용자와 상호작용하는 챗봇의 경우, LCEL을 사용하여 부분적으로 생성된 텍스트로 바로 응답을 시작함으로써 더 인터랙티브하고 반응성이 좋은 사용자 경험을 제공할 수 있습니다.
프로덕션 수준 프로그램에서의 LCEL의 역할
LCEL의 설계는 LLM의 기능을 활용하는 복잡한 워크플로우를 보다 쉽게 구축하고 관리할 수 있도록 하는 데 중점을 둡니다. 이는 다양한 작업 모드(동기, 비동기, 배치, 스트리밍)를 처리하는 데 있어 복잡성을 추상화하여, 개발자가 워크플로우의 논리 정의에 집중할 수 있도록 합니다. 이러한 접근 방식은 특히 신뢰성, 확장성, 성능이 중요한 프로덕션 환경에서 매우 가치가 있습니다.
구현 및 스키마
LangChain Runnables 및 LCEL의 구현은 프로그램의 다양한 구성 요소가 어떻게 상호작용하는지를 설명하는 스키마를 정의하는 것입니다. 이러한 스키마는 체인의 각 구성 요소가 올바른 유형의 입력을 받고 예상되는 유형의 출력을 생성하도록 보장합니다. 이러한 구조화된 접근 방식은 신뢰할 수 있는 프로그램을 구축하는 데 도움이 될 뿐만 아니라, 프로그램을 유지하고 확장하는 데도 유리합니다.
결론
LangChain Runnables과 LCEL은 LLM을 통합한 워크플로우를 구축하고 관리할 수 있는 강력한 패러다임을 제공합니다. 이들은 다양한 작업 모드를 지원하는 유연하고 확장 가능한 프레임워크를 제공하여, 복잡한 데이터 처리 작업을 간단하게 구성하고 강력한 처리 체인을 만들 수 있습니다. LCEL과 Runnables을 활용하여 효율적이고 반응성이 뛰어난 확장 가능한 솔루션을 만들 수 있습니다.