블로그 이미지
Peter Note
Web & LLM FullStacker, Application Architecter, KnowHow Dispenser and Bike Rider

Publication

Category

Recent Post

'Linear algebra'에 해당되는 글 1

  1. 2018.07.19 [Machine Learning - NG] Linear Algebra - 선형 대수학1
2018. 7. 19. 15:27 Deep Learning/ML by Andrew Ng

선형 대수학 강좌를 정리한다. 




Matrix vs Vector vs Scalar


Matrix = m * n = 행*렬 = row * column

Vector = m * 1 형태의 Matrix  = 크기와 방향을 가짐

Scalar = Matrix * 상수 = 크기만 가짐



Matrix Vector Multiplication (곱)


[ m * n ] [ n * 1 ] = [ m * 1 ]


가설 방정식을 이와 같이 표현할 수 있음. 예로 집값 예측 방정식을 수식으로 표현하면 4차원 벡터가 (4 dimensional vector) 나온다. 





Matrix Matrix Multiplication


matrix vector 곱의 결과를 모아 놓은 형태로 보면됨.



결과는 다음의 형태가 된다. 




각 가설을 다시 matrix matrix multiplication으로 만들면 각 가설의 결과값이 column으로 나온다.




Matrix properties (속성)


A, B가 일반 행렬이고, I 가 항등 행렬이라고 하면 


- 교환 법칙:  A * B != B * A  성립하지 않는다. 

- 행렬곱 주의: A * (B * C) = (A * B) * C

- 항등행렬: n*n 으로 행과 열이 같으면서 대각선은 1이고 나머지는 0인 행렬 (identity matrix),  A * I = I * A = A




Inverse matrix (역행렬)


Matrix을 inverse해서 역행렬하고 matrix과 곱하면 항등행렬을 얻는다. 이때 역행렬을 얻을 수 있는 것은 정방행렬(행과 열의 수가 같은 행렬)뿐이다. 



역행렬을 가질 수 없는 예로 0으로 채워진 행렬은 역행렬을 가질 수 없다. 이를 singular matrix 또는 degenerate matrix라 칭한다. 



Matrix transpose (전치행렬, transposition)


m * n 을 n * m으로 만들기





참조


- 앤드류응 교수의 선형대수학 강좌

posted by Peter Note
prev 1 next