블로그 이미지
윤영식
Frontend Application Architecter, Full Stacker, KnowHow Dispenser and Bike Rider

Publication

Statistics Graph

Recent Comment

2013.09.09 21:52 Reactive Data

Eclipse하에서 하둡코딩시 Maven을 기본으로 하여 외부 라이브러리 의존성을 관리하자.



Hadoop 역할

  - 분산된 파일을 처리하는 순서

   > input HDFS으로 들어오기

   > Job 수행 : 읽어서 로직처리

   > 결과를 파일 또는 DB에 넣는다 

  - Tera 단위의 데이터가 이미 HDFS에 있을 경우 해당 데이터를 처리하는데 하둡의 쓰임새가 있다

  - HDFS와 MapReduce의 이해 



Maven Project 만들기

  - Maven Project 선택하고 "Create a simple project" 선택한다  


  - 메이븐의 GroupID와 ArtifactID 설정한다 


  - 최종 생성 내역 

    MapReduce 프로그래밍을 여기서 하게 되고, 단위 테스트 프로그래밍도 할 수 있다


  - pom.xml  에 hadoop 관련 라이브러리 의존관계를 넣는다.  (파란색이 추가부분)

    추가하고 저장을 하면 자동으로 의존관계 라이브러리를 다운로드 받는다

    이클립트 좌측 "Project Explorer"의 "Maven Dependencies"에서 관련 파일들이 추가된 것을 확인할 수 있다 

// pom.xml 내역

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

  <modelVersion>4.0.0</modelVersion>

  <groupId>kr.mobiconsoft.hadoop</groupId>

  <artifactId>MapReduce</artifactId>

  <version>1.0.0-SNAPSHOT</version>

  

  <dependencies>

  <dependency>

  <groupId>org.apache.hadoop</groupId>

  <artifactId>hadoop-core</artifactId>

  <version>1.1.2</version>

         </dependency>

  </dependencies>

  

</project>


// 결과 



Word Counting MapReduce 구현하기 

  - file 2개 생성하고 유사한 word를 넣는다 

// file01

hello world bye world


// file02

hi world hello dowon

  - Mapper Class를 생성 


import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reporter;


/**

 * K1 : read key type

 * V2 : read value type

 * K2 : write key type

 * V2 : write value type

 */

//public class WordCountMapper implements Mapper<K1, V1, K2, V2> {

public class WordCountMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {


// map 결과는 reducer로 자동으로 던져진다 

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

// TODO Auto-generated method stub

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while(tokenizer.hasMoreTokens()) {

Text outputKey = new Text(tokenizer.nextToken());

// Hadoop 에서 wrapping한 Integer 타입의 객체를 넣어줌 

// param1: outputKey, param2: outputValue

output.collect(outputKey, new IntWritable(1));

}

}

}


  - Reducer Class 생성


import java.io.IOException;

import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;


/**

 * K1 : Mapper의 K2 와 동일

 * V1 : Mapper의 V2 와 동일 

 */

public class WordCountReducer extends MapReduceBase 

 implements Reducer<Text, IntWritable, Text, IntWritable> {


/**

* V1 에서 values는 Iterator이다. 실제 같은 단어가 여러개 일 경우 

*/

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

// TODO Auto-generated method stub

int sum = 0;

while(values.hasNext()) {

sum += values.next().get(); // get Integer value

}

output.collect(key, new IntWritable(sum));

}

}


  - Job Tracker를 생성 : 하단 main 선택한다 


import java.io.IOException;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.TextInputFormat;

import org.apache.hadoop.mapred.TextOutputFormat;



public class WordCount {


public static void main(String[] args) throws IOException {

// 1. configuration Mapper & Reducer of Hadoop

JobConf conf = new JobConf();

conf.setJobName("wordcount");

conf.setMapperClass(WordCountMapper.class);

conf.setReducerClass(WordCountReducer.class);

// 2. final output key type & value type

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

// 3. in/output format 

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

// 4. set the path of file for read files

//    input path : args[0]

//    output path : args[1]

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

// 5. run job

JobClient.runJob(conf);

}


}

  

  - 최종 모습 


  - eclipse 설정하기 

    main펑션이 있는 WordCount를 수행할 때 input path와 output path를 지정하여 준다 

    이때 output path의 디렉토리는 생성되어 있지 않아야 한다 (target/hadoop-result)

    하단 우측 "run" 클릭 


  - 결과값 

 

  - 결국 이런 처리과정을 수행하게 된다 


  - Mapper와 Reducer 역할 

    Mapper : 소스를 쪼개어 key:value 맵을 여러개 만들고

    Reducer : 여러 Map 값을 하나의 결과값으로 만들어 준다 



단위 테스트 해보기 

  - pom.xml에 mrunit 추가 

 <dependencies>

  <dependency>

  <groupId>org.apache.hadoop</groupId>

  <artifactId>hadoop-core</artifactId>

  <version>1.1.2</version>

  </dependency>

 

  <dependency>

  <groupId>org.apache.mrunit</groupId>

  <artifactId>mrunit</artifactId>

  <version>0.8.0-incubating</version>

  <scope>test</scope>

  </dependency>

  </dependencies>


  - Mapper Test 클래스 생성

    Run As... 에서 JUnit으로 테스트 하여 초록색-성공인지 체크한다 

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mrunit.MapDriver;

import org.junit.Test;


/**

 * 테스트를 통하여 Mapper와 Reducer를 테스트에서 수행하여 검증 할 수 있다 

 * @author dowon

 *

 */

public class WordCountMapperTest {


  @Test

  public void testMap() {

    // 1. 설

    Text value = new Text("Hello World Bye World");

    

    MapDriver<LongWritable, Text, Text, IntWritable> mapDriver = new MapDriver();

    mapDriver.withMapper(new WordCountMapper());

    mapDriver.withInputValue(value);

    

    // 2. 검정 및 실행 

    // 순서를 정확히 해야 에러없이 수행된다. 빼먹어도 에러가 난다 

    mapDriver.withOutput(new Text("Hello"), new IntWritable(1));

    mapDriver.withOutput(new Text("World"), new IntWritable(1));

    mapDriver.withOutput(new Text("Bye"), new IntWritable(1));

    mapDriver.withOutput(new Text("World"), new IntWritable(1));

    mapDriver.runTest();

  }

}


  - Reducer Test 클래스 생성

    Run As... 에서 JUnit으로 테스트 하여 초록색-성공인지 체크한다 

import java.util.Arrays;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mrunit.ReduceDriver;

import org.junit.Test;


public class WordCountReducerTest {

  

  @Test

  public void testReducer() {

      // 1. 설정

    ReduceDriver<Text, IntWritable, Text, IntWritable> reduceDriver = new ReduceDriver();

    reduceDriver.withReducer(new WordCountReducer());

    reduceDriver.withInputKey(new Text("World"));

    reduceDriver.withInputValues(Arrays.asList(new IntWritable(1), new IntWritable(1)));

    

    // 2. 검증 및 실행 

    reduceDriver.withOutput(new Text("World"), new IntWritable(2));

    reduceDriver.runTest();

  }

}



<참조>

  - Maven 기초 사용법

저작자 표시 비영리 변경 금지
신고
posted by peter yun 윤영식