블로그 이미지
Peter Note
Web & LLM FullStacker, Application Architecter, KnowHow Dispenser and Bike Rider

Publication

Category

Recent Post

2015. 2. 28. 11:56 Deep Learning

선형 분류기 개념과 지지벡터머신(SVM, support-vector machines)에 대해 알아본다. 데이트 매칭에 데이터를 기본으로 알아봄. 



데이터 세트 


  - 데이터 분할에서 의사결정트리는 세로, 가로 직선으로 고지식함

  - 산포도(scatter plot chart)를 통해 도움받음 

 



기본 선형 분류


  - 산포도에서 각 범주(class) 내 모든 데이터들의 평균을 찾고 그 범주의 중앙을 나타내는 점을 만듦 (그림. 9-4)

  - 일치분류를 위해 백터의 각도를 계산해서 작으면 일치, 크면 불일치 (그림. 9-6)

  - 백터내적(dot-product) : 벡터와 벡터의 방향/크기 비교 






분류 데이터의 특성


  - 데이터 정규화 (Data Normalization)

  - 숫자로 변형 -> 예/아니오(1/-1), 관심/비관심(0/1) : 사람 쌍을 다룰 때 유용 

  - 공통 관심의 수, 모든 관심을 포용할 새로운 변수를 만듦

  - 거리 데이터 구함

  - 각 변수에 대한 축적(scale)을 조정함 : 최대/최소값 




커널 기법 이해

  

  - 커널 트릭 : 차원을 높이지 않고 차원을 올리는 효과를 거둠. 

  - 펑션을 통해 원하는 값을 구함 : 방사 펑션 (RBF: radial basis function)




지지 벡터 머신 (SVM)


  - 각 범주에서 가능한 멀리 떨어진 선을 찾아 해결하려고 시도한다. 비선형을 극복 (non-linear)

  - 먼저 범주를 나눈다 이때 커널 트릭을 사용해서 구하고 이것이 차원이 된다. 각 차원 즉 범주의 사이의 초평면(hyperplane)을 만든다. 

  - 해당 초평면에 근접한 것들이 매칭하는 것이다.  (그림. 9-10)





<참조> 


  - 내적 공간

  - 서포트 벡터 머신(한글), 서포트 벡터 머신 공식(영어)

  - 초평면

  - LIBSVM 라이브러리 

  - 정규화

'Deep Learning' 카테고리의 다른 글

[인공지능] 공부 여정  (0) 2018.07.31
[ML] 11주차 - 독립 특성 발견  (0) 2015.03.07
[ML] 9주차 - 가격 모델링  (0) 2015.02.21
[ML] 8주차 - 7장 의사결정트리  (0) 2015.02.14
[ML] 7주차 - 6장 문서 필터링  (0) 2015.02.07
posted by Peter Note