블로그 이미지
윤영식
Application Architecter, Full Stacker, KnowHow Dispenser and Bike Rider

Publication

Statistics Graph

Recent Comment

2018.08.22 14:40 AI Deep Learning/Tensorflow

이찬우님의 텐서플로우 유튜브강좌를 정리한다. 




강좌 3


로지스틱 비용함수를 만들기

  - 좌측과 우측에 대한 convex 를 만들기 위한 식

cost = tf.reduce_sum(-y*tf.log(output)-(1-y)*tf.log(1-output), reduction_indices=1)


prediction과 label끼리의 정확도를 판단하기 

  - 각자의 벡터 매칭이 맞으면 1, 틀리면 0으로 하는 값을 다시 n*1 벡터로 만든다. 

  - 해당 백터의 값에 대한 평균을 구한다. 

  - 이때 1, 0값은 bool이어서 float32로 변환하여 계산한다.

  - 잘 맞으면 평균 1 이 나온다. 

comp_pred = tf.equal(tf.argmax(output, 1), tf.argmax(y, 1))

accuracy = tf.reduce_mean(tf.cast(comp_pred, tf.float32))


모델 저장하기

  - Training시킨 모델을 저장하는 것을 Checkpoint라 한다.

  - 저장내용에는 Weight과 Model이 저장될 수 있다. 

  - Weight관련 Variable을 저장한후 Save한다.

  - 저장시 유의점은 Variable, placeholder 함수의 파라미터중 하나인 Name이 자동으로 지정된다. 

W_o = tf.Variable(tf.truncated_normal(shape=[HIDDEN2_SIZE, CLASSES], dtype=tf.float32))

b_o = tf.Variable( tf.zeros([CLASSES]), dtype=tf.float32)


param_list = [W_h1, b_h1, W_h2, b_h2, W_o, b_o]

saver = tf.train.Saver(param_list)


hidden1 = tf.sigmoid(tf.matmul(x, W_h1) + b_h1)

hidden2 = tf.sigmoid(tf.matmul(hidden1, W_h2) + b_h2)


....

for i in range(1000):

    _, loss = sess.run([train, cost, accuracy], feed_dict = feed_dict)

    if i % 100 == 0:

        saver.save(sess, './tensorflow_3_lec.ckpt')

        ...




강좌 4


저장된 Weight Restoring하기 

  - save 할 때 Widget의 Variable에 name을 지정한다. 

  - 

x = tf.placeholder(tf.float32, shape=[None, INPUT_SIZE], name='x')

y = tf.placeholder(tf.float32, shape=[None, CLASSES], name='y')

W_h1 = tf.Variable(tf.truncated_normal(shape=[INPUT_SIZE, HIDDEN1_SIZE], dtype=tf.float32), name='W_h1')

b_h1 = tf.Variable(tf.zeros([HIDDEN1_SIZE]), dtype=tf.float32, name='b_h1')

hidden1 = tf.sigmoid(tf.matmul(x, W_h1) + b_h1, name='hidden1')

hidden2 = tf.sigmoid(tf.matmul(hidden1, W_h2) + b_h2, name='hidden2')

output = tf.sigmoid(tf.matmul(hidden2, W_o) + b_o, name='output')

...

saver.restore(sess, './tensorflow_3.ckpt')




강좌 5


Tensorboard는 디버깅 용도이다. 공식 튜토리얼을 참조한다.

  - name_scope는 묶음 단위이다.

  - scalar: 로그 데이터 남기기

  - tf.summary.merge_all()

  - tf.summary.FileWriter(<dir>, session.graph) 

# 가설함수 

with tf.name_scope('hidden_layer_1') as h1scope:

    hidden1 = tf.sigmoid(tf.matmul(x, W_h1) + b_h1, name='hidden1')


with tf.name_scope('hidden_layer_2') as h2scope:

    hidden2 = tf.sigmoid(tf.matmul(hidden1, W_h2) + b_h2, name='hidden2')

    

with tf.name_scope('output_layer') as oscope:

    output = tf.sigmoid(tf.matmul(hidden2, W_o) + b_o, name='output')


....


# 수행 

sess= tf.Session()

sess.run(tf.global_variables_initializer())


merge = tf.summary.merge_all()


for i in range(1000):

    _, loss, acc = sess.run([train, cost, accuracy], feed_dict = feed_dict)

    if i % 100 == 0:

        train_writer = tf.summary.FileWriter('./summaries/', sess.graph)


$ tensorboard --logdir=./summaries 수행한다. 




강좌 6


Loading Data in Tensorflow 참조. CSV파일 읽기

  - decode_csv로 콤마기반의 csv파일을 읽어들인다.

  - record_defaults = [[1], [1], [1], [1], [1], [1], [1], [1], [1]]  Fixed 자리수에서 비어있는 값에 대한 default value이다. 

  - start_queue_runners는 Session.run이 수행되기전에 호출해서 queue를 실행해서 file이 queue에서 대기토록 한다.

  - Coordinator 는 Thread 관리를 수행한다.

!

Image 읽기

  - FixedLengthRecordReader로 읽음

  - decode_raw를 사용함




to be continue...




<참조>

  - 텐서플로우의 체크포인트 설명

  - 텐서플로우 Save & Restore

  - 파이썬의 With 구문 이해 





'AI Deep Learning > Tensorflow' 카테고리의 다른 글

[Chanwoo Jacod Lee] Tensorflow 강좌 정리  (0) 2018.08.22
posted by peter yun 윤영식