블로그 이미지
Peter Note
AI & Web FullStacker, Application Architecter, KnowHow Dispenser and Bike Rider

Publication

Category

Recent Post

2024. 8. 9. 10:24 LLM FullStacker/LangChain

임베딩을 통해 실수(float) 벡터값은 Vector Store에 저장을 한다. 그리고 사용자의 Query에 대해서도 벡터로 변환하여 Vector Store에 Sematic Search를 한다.

출처: DeepLearning.ai

 

유사도가 높은 문서뭉치들을 프롬프트에 담아 LLM에 요청한다. 

출처: DeepLearning.ai

 

 

패키지

vectorstores 패키지는 langchain.vectorstores 패키지에서 langchain_community.vectorstores 패키지의 모듈을 re-export 하고 있다. 

 

- 70 개가량의 벡터 저장소 구현체를 제공한다. https://python.langchain.com/v0.2/docs/integrations/vectorstores/

 

Vector stores | 🦜️🔗 LangChain

📄️ Hippo Transwarp Hippo is an enterprise-level cloud-native distributed vector database that supports storage, retrieval, and management of massive vector-based datasets. It efficiently solves problems such as vector similarity search and high-densit

python.langchain.com

 

- 가장 많이 사용하는 것은 FAISS, Chroma 등이다. 

 

Chroma 패키지는 내부적으로 chromadb 패키지를 사용하여 LangChain과 연동시켜주는 인터페이스이다.

- VectoreStore 생성시 "embedding_function", "collection_name"을 지정할 수 있다. 

from chromadb import Client
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings

# 1. OpenAI Embeddings 초기화
openai_embedding = OpenAIEmbeddings()

# 2. Chroma 벡터스토어 클라이언트 생성
client = Client()

# 3. Chroma 벡터스토어 생성
vectorstore = Chroma(
    embedding_function=openai_embedding,  # OpenAI Embedding 사용
    collection_name="my_openai_collection",  # 컬렉션 이름
    client=client                           # Chroma 클라이언트
)

# 4. 데이터 추가
documents = ["This is a test document.", "Another document for testing."]
vectorstore.add_texts(texts=documents)

# 5. 데이터 검색
query = "test"
results = vectorstore.similarity_search(query, k=2)

# 6. 검색 결과 출력
for result in results:
    print(f"Document: {result.page_content}, Score: {result.score}")

 

또는 from_documents 클래스메서드를 이용하여 호출한다. 

- SentenceTransformerEmbeddings 는 내부적으로 HuggingFaceEmbeddings 을 사용하고 디폴디 임베딩 모델로 "BAAI/bge-large-en"을 사용한다. 

- load() --> split_documents() --> from_documents() 를 통해서 

# import
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.sentence_transformer import (
    SentenceTransformerEmbeddings,
)
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import CharacterTextSplitter

# 문서를 로드하고 청크로 분할합니다.
loader = TextLoader("./data/appendix-keywords.txt")
documents = loader.load()

# 문서를 청크로 분할합니다.
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

# 오픈 소스 임베딩 함수를 생성합니다.
stf_embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")

# Chroma에 로드합니다.
db = Chroma.from_documents(docs, stf_embeddings)

# 질의합니다.
query = "What is Word2Vec?"
docs = db.similarity_search(query)

# 결과를 출력합니다.
print(docs[0].page_content)

 

API

VectorStore 드라이버 구현체는 langchain_core의 VectoreStore를 상속받아 구현한다. 

 

- VectorStore 를 상속받아 __init__ 구현 

 class Chroma(VectorStore):  
   def __init__(
        self,
        collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
        embedding_function: Optional[Embeddings] = None,
        persist_directory: Optional[str] = None,
        client_settings: Optional[chromadb.config.Settings] = None,
        collection_metadata: Optional[Dict] = None,
        client: Optional[chromadb.Client] = None,
        relevance_score_fn: Optional[Callable[[float], float]] = None,
    ) -> None:
        """Initialize with a Chroma client."""
        try:
            import chromadb
            import chromadb.config
        except ImportError:
            raise ImportError(
                "Could not import chromadb python package. "
                "Please install it with `pip install chromadb`."
            )

        if client is not None:
            self._client_settings = client_settings
            self._client = client
            self._persist_directory = persist_directory
        else:
            if client_settings:
                # If client_settings is provided with persist_directory specified,
                # then it is "in-memory and persisting to disk" mode.
                client_settings.persist_directory = (
                    persist_directory or client_settings.persist_directory
                )
                if client_settings.persist_directory is not None:
                    # Maintain backwards compatibility with chromadb < 0.4.0
                    major, minor, _ = chromadb.__version__.split(".")
                    if int(major) == 0 and int(minor) < 4:
                        client_settings.chroma_db_impl = "duckdb+parquet"

                _client_settings = client_settings
            elif persist_directory:
                # Maintain backwards compatibility with chromadb < 0.4.0
                major, minor, _ = chromadb.__version__.split(".")
                if int(major) == 0 and int(minor) < 4:
                    _client_settings = chromadb.config.Settings(
                        chroma_db_impl="duckdb+parquet",
                    )
                else:
                    _client_settings = chromadb.config.Settings(is_persistent=True)
                _client_settings.persist_directory = persist_directory
            else:
                _client_settings = chromadb.config.Settings()
            self._client_settings = _client_settings
            self._client = chromadb.Client(_client_settings)
            self._persist_directory = (
                _client_settings.persist_directory or persist_directory
            )

        self._embedding_function = embedding_function
        self._collection = self._client.get_or_create_collection(
            name=collection_name,
            embedding_function=None,
            metadata=collection_metadata,
        )
        self.override_relevance_score_fn = relevance_score_fn

 

- from_documents 는 classmethod 이면서 벡터객체를 반환한다.

   - documents: splitted 된 document 리스트

   - embedding: embedding model 인스턴스

    @classmethod
    def from_documents(
        cls: Type[VST],
        documents: List[Document],
        embedding: Embeddings,
        **kwargs: Any,
    ) -> VST:
        """Return VectorStore initialized from documents and embeddings.

        Args:
            documents: List of Documents to add to the vectorstore.
            embedding: Embedding function to use.
            **kwargs: Additional keyword arguments.

        Returns:
            VectorStore: VectorStore initialized from documents and embeddings.
        """
        texts = [d.page_content for d in documents]
        metadatas = [d.metadata for d in documents]
        return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)

내부에서 클래스메서드인 from_texts를 호출한다. from_texts는 abstractmethod로 각 vectorstore에서 구현한다. 

    @classmethod
    @abstractmethod
    def from_texts(
        cls: Type[VST],
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        **kwargs: Any,
    ) -> VST:
        """Return VectorStore initialized from texts and embeddings.

        Args:
            texts: Texts to add to the vectorstore.
            embedding: Embedding function to use.
            metadatas: Optional list of metadatas associated with the texts.
                Default is None.
            kwargs: Additional keyword arguments.

        Returns:
            VectorStore: VectorStore initialized from texts and embeddings.
        """

 

 

- similarity_search 는 abstractmethod로 각 vectorstore에서 구현을 해야 한다. 

    @abstractmethod
    def similarity_search(
        self, query: str, k: int = 4, **kwargs: Any
    ) -> List[Document]:
        """Return docs most similar to query.

        Args:
            query: Input text.
            k: Number of Documents to return. Defaults to 4.
            **kwargs: Arguments to pass to the search method.

        Returns:
            List of Documents most similar to the query.
        """

 

- search 는 검색 타입을 선택한다. "similarity", "similarity_score_threshold", "mmr" 등이 있다. 

  - 반환값은 List[Document] 이다. 

    def search(self, query: str, search_type: str, **kwargs: Any) -> List[Document]:
        """Return docs most similar to query using a specified search type.

        Args:
            query: Input text
            search_type: Type of search to perform. Can be "similarity",
                "mmr", or "similarity_score_threshold".
            **kwargs: Arguments to pass to the search method.

        Returns:
            List of Documents most similar to the query.

        Raises:
            ValueError: If search_type is not one of "similarity",
                "mmr", or "similarity_score_threshold".
        """
        if search_type == "similarity":
            return self.similarity_search(query, **kwargs)
        elif search_type == "similarity_score_threshold":
            docs_and_similarities = self.similarity_search_with_relevance_scores(
                query, **kwargs
            )
            return [doc for doc, _ in docs_and_similarities]
        elif search_type == "mmr":
            return self.max_marginal_relevance_search(query, **kwargs)
        else:
            raise ValueError(
                f"search_type of {search_type} not allowed. Expected "
                "search_type to be 'similarity', 'similarity_score_threshold'"
                " or 'mmr'."
            )

 

 

- as_retriever 는 VectorStore 에는 VectorStoreRetriever 를 생성하여 반환한다. 

def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever:

 

Retriever 에 대해 다음 글에서 살펴보자. 

 

 

<참조>

- API: https://api.python.langchain.com/en/latest/community_api_reference.html#module-langchain_community.vectorstores

- 공식문서: https://python.langchain.com/v0.2/docs/integrations/vectorstores/

 

Vector stores | 🦜️🔗 LangChain

📄️ Hippo Transwarp Hippo is an enterprise-level cloud-native distributed vector database that supports storage, retrieval, and management of massive vector-based datasets. It efficiently solves problems such as vector similarity search and high-densit

python.langchain.com

- LangChain KR: https://wikidocs.net/234013

 

01. 벡터저장소(VectorStore) 사용법 톺아보기

.custom { background-color: #008d8d; color: white; padding: 0.25em 0.5…

wikidocs.net

 

posted by Peter Note