블로그 이미지
윤영식
Full Stacker, Application Architecter, KnowHow Dispenser and Bike Rider

Publication

Category

Recent Post

2018. 7. 13. 16:10 AI Deep Learning/NN by Sung Kim

Q Network 강좌를 정리한다. 





Q Network 개념


실제 문제를 풀어가기에는 Q Table 구성 사이즈가 너무나 크다. 따라서 Network을 구성해서 푼다. 주어진 입력, 출력을 사용자가 조절하면서 State, Action주어 원하는 Output을 얻어낸다. 적은 table을 사용해서 원하는 결과를 얻어내는 것 



Gym Game에서 출력을 Action 4개로 보면 다음과 같다. 


상태만 주고 모든 가능한 액션을 얻어내자. 앞으로 아래 모델을 사용한다. 



 

비용에 대한 최소화를 공식화 하면 

- W: Weight, 

- y: 실제값

- cost: 비용




목표는 Optimal Q인 Q* 즉, y값을 구한다. Ws는 네트워크가 만들어낸 Q prediction이라 할 수 있다.  




Q hat을 붙이면 hat이 prediction을 의미한다. "시타 = 세타"를 weight 이다. 




이 알고리즘을 문장으로 풀어쓰면

- 초기 weight을 random하게 준다.

- 첫번째 상태를 준다. @(s) == 파이(에스) - one hot을 해준다.

- E-greedy를 사용해 가장 좋은 action을 취한다.

- 결과로 상태랑 reward를 준다.

- 학습을 한다. 


해당 알고리즘은 deep mind의 핵심 알고리즘이다. 코드화 하면



다음으로 학습을 시킨다. 



Yj값으 두개인데, Done이면 Rj이고, 중간 진행은 Rj + rmaxxQ(@=1,a:세타)이다. 

Q Network의 결과는 Q Table 보다 성능이 안좋다. 이를 좀 더 빠르게 할려면?

diverge(다이버즈): 분산되어 결과가 안 좋다의 뜻






DQN 개념 


강화학습의 가장 중요한 알고리즘이다. (강좌) 두가지 큰 문제는 2가지 이다. 



  - 샘플데이터간의 correlation: 샘플이 다양하지 않고 연관성(correlation)이 있다.   

  


  - target이 흔들린다. target은 Y Label 이다. 예) 화살을 쏘자 과녁이 움직이는 경우




DQN의 3가지 솔루션


1) Go deep

네트워크가 깊게 갈 수록 좋다. 


2) Experience replay

action의 state를 buffer에 저장한후 사용한다. D = buffer

 


buffer에서 random하게 가져오면 sample의 correlation을 해결할 수 있다. 



3) non-stationary targets 

타겟이 움직인다. 세타 Weight을 update하면 target도 움직인다. Target의 세타를 그대로 둔다. 두개의 Network에서 첫번째 Network에서 target을 가져와서 두번째 Network에서 사용한다. 




2015년 Deep Mind가 Nature에 연재한 논문 알고리즘






참조


- 김성훈 교수님의 Q Network 강좌

- 김성훈 교수님의 DQN 강좌

'AI Deep Learning > NN by Sung Kim' 카테고리의 다른 글

[Reinforcement Learning] 강화학습  (0) 2018.07.12
[RNN] Basic & Training 하기  (0) 2018.07.11
[RNN] Recurrent Neural Network 개념  (0) 2018.07.11
[CNN] Class, tf.layers, Ensemble  (0) 2018.07.11
[CNN] MNIST 99% 도전  (0) 2018.07.11
posted by 윤영식
2018. 7. 12. 16:36 AI Deep Learning/NN by Sung Kim

강화학습 강좌를 정리한다.





RL 개념


환경(세상, Environment)에서 행동하는 액터(Actor)는 환경속에서의 상태가 변경됨. 매순간마다 잘했다 못했다는 보상(Reward)을 줌.

- 1997년 Tom Mitchell 나온 이야기이다. 

- 2013, 2015년에 부활함: 벽돌깨기 게임에서 사용




옛날 게임에 적용해서 학습해 보니 reinforcement learning이 사람보다 더 잘하더라~~~. 알파고가 deep-reinforcement-learning 사용한다. 

- 빌딩 에너지 관리

- 로보틱스

- 투자

- E-commerce 추천

- 광고 ads


Q = r + Q 수학 기본을 사용한다. Tensorflow/Python으로 실습가능 






OpenAI GYM Games


Agent가 움직이고, 상태와 보상을 받는다. gym 환경을 별도 제공한다. 




gym 코드






Q Learning


RL의 핵심이다. 

입력

  - 내가 있는 상태

  - 이런 행동을 할려고 합니다.

    Q(s, a) => s-state, a-action

출력

  - Q가 결과를 내줌




Optimal Policy = 파이*별표

Q가 있다고 가정했지만 Q를 어떻게 학습할 것인가가 중요 사항임.



==> r + maxQ(s1, a1)

r: reward

max: argmax

Q

s: state

a: action




Q값이 학습을 통해서 다음과 같이 생긴다. 



전체 Q 알고리즘 정리하면

- 그림처럼 Q(s,a) 테이블을 만들고 0으로 초기화 한다.

   

- state s 상태를 가져온다. 

- 끝날때까지 무한 반복하면서 action을 취하고 reward를 받으면서 S -> S1(prime)으로 이동한다. 

- Q 학습이 진행된다. 



r: 현재의 reward 값

maxQ(s1,a1): 다음에 얻을 수 있는 최고의 reward 값



Tensorflow 구현 코드 


-  Q table초기화: np.zeros

- env.reset() 현재의 상태값

- while not done 돌며 끝날때 까지 Q Learning(학습) 수행






Exploit vs Exploration


Exploit: 현재 있는 값을 이용한다.

Exploration: 모헙을 해본다.

예) 평일에는 가던곳을 하고 주말에는 안가보던 곳을 모험해 본다. 



E-greedy: exploration의 정도

Discounted future reward: 감마(0.9) 를 곱하여 미래의 reward를 줄여서 계산한다. 


Tensorflow code







참조


- 김성훈교수님의 강화학습 강좌

- 김성훈교수님의 Q Learning 강좌

- OpenAI GYM 설명

- 강화학습 이해하기

'AI Deep Learning > NN by Sung Kim' 카테고리의 다른 글

[Reinforcement Learning] Q Network  (0) 2018.07.13
[RNN] Basic & Training 하기  (0) 2018.07.11
[RNN] Recurrent Neural Network 개념  (0) 2018.07.11
[CNN] Class, tf.layers, Ensemble  (0) 2018.07.11
[CNN] MNIST 99% 도전  (0) 2018.07.11
posted by 윤영식
2018. 7. 11. 17:13 AI Deep Learning/NN by Sung Kim

RNN Basic 강좌를 정리한다. 






RNN Basic


cell단위로 다루어 Tensorfllow 코딩으로 OUTPUT이 다시 INPUT으로 들어오게 한다. 

- xxxRNNCell 의 output 사이즈를 정해주고 cell을 만든다. 

- cell을 dynamic_rnn에서 cell을 실제 구동시켜본다. 


cell 학습: BasicRNNCell, BasicLSTMCell등을 바꾸어 사용할 수 있다.








Cell 만들기 



문자를 one hot encoding 을 이용해 vector로 표현한다. 

- input dimenstion

- hidden size를 우리가 정하기 나름에 따라 정해질 수 있다. 

위 두가지는 cell을 만들 때 정의하는 것이다. 




Tensorflow로 표현한다. 

- BasicLSTMCell 사용

- outputs, states를 얻음 

hidden_size 2여서 값은 2개의 shape 가 나온다. 






Unfold 풀어놓기


이것을 풀어서 (unfold) 보자.

- sequence_length 5는 unfold 5개 한다는 것이다. 입력데이터의 모양에 따라 결정된다. 



Tensorflow에서 h, e, l, o에 대한 변수를 만들어 np.array([h, e, l, l, o]..)를 생성한다. dimenstion 2개인 5개 output이 나옴. 이것은 입력을 줄 때 어떤 Shape이 나오는지 출력해 본 것이다. 







Batch Size 만들기



문자를 다양하게 주어 (Batch Size)를 여러개 넣어서 만들어 본다. 




Tensorflow 코드 






Hi Hello Training 시키기


h를 입력하면 다음은 i 나옴을 학습시킨다. 




훈련시킬 단어: "hihello" 에서 Unqiue한 Vocabulary를 만든다. 문자열에 대해 index를 표현한다. 해당 index를 one hot encoding으로 변환한다.



여기서 다음을 정한다.

- 입력 차원

- Sequence 갯수

- 출력(hidden) 차원

- Batch size 정하기 




Creating NN Cell 


cell의 size는 출력값 5로 정한다. 

- rnn_cell.BasicRNNCell(rnn_size)

- rnn_cell.BasicLSTMCell(rnn_size)

- rnn_cell.GRUCell(rnn_size)




RNN Parameters


output from the LSTM : hidden_size = 5 

one-hot size : input_dim = 5

one sentence : batch_size = 1

/ihello/ == 6 : sequence_length = 6



Data Creation 




Feed to RNN


None은 batch가 많아도됨을 의미. cell을 만들고, batch_size주고, dynmaic_rnn을 호출한다. 


Cost: sequence_loss


얼마나 Output이 정확한가를 sequence_loss를 사용하여 예측을 해본다. 예측값이 얼마나 좋은지를 loss값으로 알 수 있다. 



모델을 만든다. 


지금은 output을 간단히 logits에 넣어서 사용한다. 실제는 이렇게 사용하진 않는다. 


Training을 시킨다. 





결과


prediction한 charactor에 대해 시간이 지날 수록 그 다음 문자에 대한 예측(prediction) 이 높아진다. 





참조


- 김성훈 교수님의 RNN Basic 강좌

- 김성훈 교수님의 RNN Training 강좌

- RNN Basic, LSTM 이해

'AI Deep Learning > NN by Sung Kim' 카테고리의 다른 글

[Reinforcement Learning] Q Network  (0) 2018.07.13
[Reinforcement Learning] 강화학습  (0) 2018.07.12
[RNN] Recurrent Neural Network 개념  (0) 2018.07.11
[CNN] Class, tf.layers, Ensemble  (0) 2018.07.11
[CNN] MNIST 99% 도전  (0) 2018.07.11
posted by 윤영식
2018. 7. 11. 15:43 AI Deep Learning/NN by Sung Kim

RNN 기본 강좌를 정리한다. 






RNN 개념


음성인식, 자연어 같은 Sequence data일 경우 처리 네트워크

- 이전의 결과가 다음 series에 영향을 미쳐야 한다. 



해당 그림을 풀어 놓으면 결과 state가 다음 연산에 영향을 미침. Series data에 적합한 모델




계산식화 하면 

- old state (ht-1) 과 x를 input로 사용하여 new state (ht)를 구한다. 




가장 기초적인 (Vanilla) RNN을 만들때 Wx를 사용한다. tanh는 sigmoid다른 형태이다. 

- ht는 다음 rnn로 넘기는 값

- y는 w x ht하여 값을 구함




Weight값으 전체  cell에 나 똑같은 값을 사용한다.







RNN 예측 사용


예) 예제에서 helo를 넣었을 때 예측으로 hello 라고 예측하는 시스템을 RNN으로 만듦 



- h,e,l,o를 1또는 0값의 벡터로 만들고 이전과 현재를 계산한다. 처음에는 0을 사용한다. 


여기서 y값을 구한다. 

softmax의 label(결과)를 취한다. 두번째 자리는 error가 발생. output layer의 값을 가지고 learning 하고 예측을 한다. 

- language model - 연관 검색어 찾기

- Speech Recognition

- Machine Translation

- Conversation Modeling/Question Answering

- Image/Video Captioning

- Image/Music/Dance Generation



RNN을 어떻게 사용하느냐가 관건이다. 



Multi Layer RNN을 사용할 수도 있다.



RNN에서 Vanilla Model가 복잡하면

- Long Short Term Memory (LSTM)을 쓰거나

- GRU by Cho et al. 2014를 쓸수도 있다.





참조


- 김성훈교수님의 RNN 기본 강좌

'AI Deep Learning > NN by Sung Kim' 카테고리의 다른 글

[Reinforcement Learning] 강화학습  (0) 2018.07.12
[RNN] Basic & Training 하기  (0) 2018.07.11
[CNN] Class, tf.layers, Ensemble  (0) 2018.07.11
[CNN] MNIST 99% 도전  (0) 2018.07.11
[CNN] Tensorflow CNN 기본  (0) 2018.07.11
posted by 윤영식
2018. 7. 11. 15:08 AI Deep Learning/NN by Sung Kim

Class, tf.layers, Ensemble 강좌를 정리한다.




Python Class로 관리하기 


파이썬의 클래스로 만들어 사용하자. 복잡한 layer를 만들 때 사용하자.



예제

class Model:


    def __init__(self, sess, name):

        self.sess = sess

        self.name = name

        self._build_net()


    def _build_net(self):

        with tf.variable_scope(self.name):

            # dropout (keep_prob) rate  0.7~0.5 on training, but should be 1

            # for testing

            self.keep_prob = tf.placeholder(tf.float32)


            # input place holders

            self.X = tf.placeholder(tf.float32, [None, 784])

            # img 28x28x1 (black/white)

            X_img = tf.reshape(self.X, [-1, 28, 28, 1])

            self.Y = tf.placeholder(tf.float32, [None, 10])


            # L1 ImgIn shape=(?, 28, 28, 1)

            W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01))

            #    Conv     -> (?, 28, 28, 32)

            #    Pool     -> (?, 14, 14, 32)

            L1 = tf.nn.conv2d(X_img, W1, strides=[1, 1, 1, 1], padding='SAME')

            L1 = tf.nn.relu(L1)

            L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1],

                                strides=[1, 2, 2, 1], padding='SAME')

            L1 = tf.nn.dropout(L1, keep_prob=self.keep_prob)

            '''

            Tensor("Conv2D:0", shape=(?, 28, 28, 32), dtype=float32)

            Tensor("Relu:0", shape=(?, 28, 28, 32), dtype=float32)

            Tensor("MaxPool:0", shape=(?, 14, 14, 32), dtype=float32)

            Tensor("dropout/mul:0", shape=(?, 14, 14, 32), dtype=float32)

            '''


            # L2 ImgIn shape=(?, 14, 14, 32)

            W2 = tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.01))

            #    Conv      ->(?, 14, 14, 64)

            #    Pool      ->(?, 7, 7, 64)

            L2 = tf.nn.conv2d(L1, W2, strides=[1, 1, 1, 1], padding='SAME')

            L2 = tf.nn.relu(L2)

            L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1],

                                strides=[1, 2, 2, 1], padding='SAME')

            L2 = tf.nn.dropout(L2, keep_prob=self.keep_prob)

            '''

            Tensor("Conv2D_1:0", shape=(?, 14, 14, 64), dtype=float32)

            Tensor("Relu_1:0", shape=(?, 14, 14, 64), dtype=float32)

            Tensor("MaxPool_1:0", shape=(?, 7, 7, 64), dtype=float32)

            Tensor("dropout_1/mul:0", shape=(?, 7, 7, 64), dtype=float32)

            '''


            # L3 ImgIn shape=(?, 7, 7, 64)

            W3 = tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.01))

            #    Conv      ->(?, 7, 7, 128)

            #    Pool      ->(?, 4, 4, 128)

            #    Reshape   ->(?, 4 * 4 * 128) # Flatten them for FC

            L3 = tf.nn.conv2d(L2, W3, strides=[1, 1, 1, 1], padding='SAME')

            L3 = tf.nn.relu(L3)

            L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1], strides=[

                                1, 2, 2, 1], padding='SAME')

            L3 = tf.nn.dropout(L3, keep_prob=self.keep_prob)


            L3_flat = tf.reshape(L3, [-1, 128 * 4 * 4])

            '''

            Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32)

            Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32)

            Tensor("MaxPool_2:0", shape=(?, 4, 4, 128), dtype=float32)

            Tensor("dropout_2/mul:0", shape=(?, 4, 4, 128), dtype=float32)

            Tensor("Reshape_1:0", shape=(?, 2048), dtype=float32)

            '''


            # L4 FC 4x4x128 inputs -> 625 outputs

            W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625],

                                 initializer=tf.contrib.layers.xavier_initializer())

            b4 = tf.Variable(tf.random_normal([625]))

            L4 = tf.nn.relu(tf.matmul(L3_flat, W4) + b4)

            L4 = tf.nn.dropout(L4, keep_prob=self.keep_prob)

            '''

            Tensor("Relu_3:0", shape=(?, 625), dtype=float32)

            Tensor("dropout_3/mul:0", shape=(?, 625), dtype=float32)

            '''


            # L5 Final FC 625 inputs -> 10 outputs

            W5 = tf.get_variable("W5", shape=[625, 10],

                                 initializer=tf.contrib.layers.xavier_initializer())

            b5 = tf.Variable(tf.random_normal([10]))

            self.logits = tf.matmul(L4, W5) + b5

            '''

            Tensor("add_1:0", shape=(?, 10), dtype=float32)

            '''


        # define cost/loss & optimizer

        self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(

            logits=self.logits, labels=self.Y))

        self.optimizer = tf.train.AdamOptimizer(

            learning_rate=learning_rate).minimize(self.cost)


        correct_prediction = tf.equal(

            tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))

        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


    def predict(self, x_test, keep_prop=1.0):

        return self.sess.run(self.logits, feed_dict={self.X: x_test, self.keep_prob: keep_prop})


    def get_accuracy(self, x_test, y_test, keep_prop=1.0):

        return self.sess.run(self.accuracy, feed_dict={self.X: x_test, self.Y: y_test, self.keep_prob: keep_prop})


    def train(self, x_data, y_data, keep_prop=0.7):

        return self.sess.run([self.cost, self.optimizer], feed_dict={

            self.X: x_data, self.Y: y_data, self.keep_prob: keep_prop})








Layer API


conv2d: convolution layer

dense: fully conntected

예제








Ensemble 사용하기 


여러개를 조합해서 조화롭게 만든다. 여러개의 독립된 Model을 training시키고, 각 예측을 조합하여 최종 결과를 만든다. 





Ensemble Training 하기


- Model을 만든다

- 각각의 독립된 Model 을 꺼내와서 학습을 시킨다. 




각각의 합치는 것으로 조화롭게 만들어 본다.  결과 중 가장 높은 값을 선택한다.




Tensorflow 코드에서 prediction은 최종 결과의 값들이다. 정확도가 0.9952 까지 올라간다. 







참조


- 김성훈 교수님의 Class, tf.layers, Ensemble 강좌

'AI Deep Learning > NN by Sung Kim' 카테고리의 다른 글

[RNN] Basic & Training 하기  (0) 2018.07.11
[RNN] Recurrent Neural Network 개념  (0) 2018.07.11
[CNN] MNIST 99% 도전  (0) 2018.07.11
[CNN] Tensorflow CNN 기본  (0) 2018.07.11
[CNN] Convolution Neural Network  (0) 2018.07.10
posted by 윤영식