블로그 이미지
Peter Note
Web & LLM FullStacker, Application Architecter, KnowHow Dispenser and Bike Rider

Publication

Category

Recent Post

'sigmoide'에 해당되는 글 1

  1. 2018.08.11 [Cost Function] 로지스틱 회귀의 비용함수 이해
2018. 8. 11. 16:12 Deep Learning

텐서플로우 강좌를 들으면서 다음의 모델을 실습으로 쥬피터에 코딩을 했다. 여기서 Cost function을 짤때 log함수를 왜 사용하고 앞에 - (마이너스)값은 왜 붙이는지 정리해 본다. 



준비

  - 아나콘다 설치

  - jupyter notebook 실행

  - python v3 


import tensorflow as tf


input_data = [[1, 5, 3, 7, 8, 10, 12]]

label_data = [0, 0, 0, 1, 0]


INPUT_SIZE = 7

HIDDEN1_SIZE=10

HIDDEN2_SIZE=8

CLASSES = 5

Learing_Rate = .05


x = tf.placeholder(tf.float32, shape=[None, INPUT_SIZE])

y = tf.placeholder(tf.float32, shape=[CLASSES])


feed_dict = {x: input_data, y: label_data}


W_h1 = tf.Variable(tf.truncated_normal(shape=[INPUT_SIZE, HIDDEN1_SIZE], dtype=tf.float32))

b_h1 = tf.Variable( tf.zeros([HIDDEN1_SIZE]), dtype=tf.float32)

hidden1 = tf.sigmoid(tf.matmul(x, W_h1) + b_h1)


W_h2 = tf.Variable(tf.truncated_normal(shape=[HIDDEN1_SIZE, HIDDEN2_SIZE], dtype=tf.float32))

b_h2 = tf.Variable( tf.zeros([HIDDEN2_SIZE]), dtype=tf.float32)

hidden2 = tf.sigmoid(tf.matmul(hidden1, W_h2) + b_h2)


W_o = tf.Variable(tf.truncated_normal(shape=[HIDDEN2_SIZE, CLASSES], dtype=tf.float32))

b_o = tf.Variable( tf.zeros([CLASSES]), dtype=tf.float32)

output = tf.sigmoid(tf.matmul(hidden2, W_o) + b_o)


cost = tf.reduce_mean(-y*tf.log(output)-(1-y)*tf.log(1-output))

train = tf.train.GradientDescentOptimizer(Learing_Rate).minimize(cost)


sess= tf.Session()

init = tf.initialize_all_variables()

sess.run(init)


for i in range(10):

    _, loss = sess.run([train, cost], feed_dict = feed_dict)

    print('step:', i)

    print('lost:', loss)


//결과

step: 0
lost: 0.794413
step: 1
lost: 0.780786
step: 2
lost: 0.767388
step: 3
lost: 0.754181
step: 4
lost: 0.741128
step: 5
lost: 0.728179
step: 6
lost: 0.715276
step: 7
lost: 0.702345
step: 8
lost: 0.689285
step: 9
lost: 0.675957



cost(비용) 함수의 목적은 비용 판단을 통해 올바른 W(가중치, 기울기)와 b(바이어스, 시작점)을 찾는 것이다. 다시 말하면 목표하는 W과 b를 찾을 수 있다면, 어떤 형태가 되었건 비용함수라고 부를 수 있다는 뜻이다. 



Inference => Loss => Training => Evaluation  순서로 진행을 한다. 좋은 예제로 MNIST.py 구글 강좌 예제 소스를 먼저 참조해 보자.


- Inference: 가설함수 수립

- Loss: 비용함수 수립

- Training: 최적화 작업 수행하여 Loss (Cost)가 작아지는 W, b 값을 구함

- Evaluation: 검증은 Training을 통해 구해진 W, b가 가설함수에 적용되어 test data를 넣었을 때, Labeled data와 일치하는지 검증함




Step-1) 가설함수 

  - matmul 은 Matrix Mutiply의 약어이다. 

  - sigmoid는 binary classification의 한계를 넘기 위해 적용. sigmoid 그래프는 중심축 0을 중심으로 좌측은 0으로, 우측을 1로 수렴한다.

  - 가설함수 (Hyphothesis):  H(x) = sigmoid(Wx + b) 로 결과값은 0 또는 1의 값을 갖는다. 수학 공식으로 하면,

     H(x) = 1 / (1 + math.exp(-(Wx + b))

     소스에서는  output = tf.sigmoid(tf.matmul(hidden2, W_o) + b_o) 이 가설함수이다.



Step-2) 비용함수

  - 가설함수를 정의했다면 해당 가설 함수의 적정한 W, b를 찾기 위해 비용(Cost) 함수를 정의한다.

     비용함수는 예측값과 실제값의 차이에 대한 평균값을 구한다. 로지스틱 회귀에 사용되는 실제 비용함수를 수학 공식으로 하면,

     cost = (1/n) * sum( -y_origin * log(sigmoid(Wx + b)) - (1 - y_origin) * log(1 - (sigmoide(Wx + b))) 

       n: 트레이닝 데이이터 수

       y_origin: 트레이닝에 에 사용될 x에 대한 입력값

     소스에서는  cost = tf.reduce_mean(-y*tf.log(output)-(1-y)*tf.log(1-output)) 이 비용함수이다. 


  - 비용함수에서 가설함수의 e를 사용하는게 아니라 log를 사용하는 이유는 e를 통해 비용함수를 그리면 다음과 같이 나오기 때문에 매끈한 경사를 만들기 위해 e의 역치함수인 log를 사용한다. 

    비용함수는 y=1 일때와 y=0 일때는 나누어 계산한다. 


  - 측정(실제 입력)값 y=1 일때는 -log(H(x)), -log(가설함수) 즉 -log(sigmoide(Wx + b)) 를 사용하고 그래프로 보면 sigmoid(Wx+b)가 0~1사이에 있고 -log(0~1)을 그린다. 

     H가 1이면 cost(1) = 0 이 되고, H가 0이면 cost = 무한대가 된다.

     좌측의 밥그릇이 된다.

     측정(실제 입력)값 y=0 일때는 가설값이 0이 되어야 한다. 이는 0에 가까울 수록 cost는 0에 가까워야 한다. -log(1 - sigmoid(Wx + b)) 되고 log(1 - (0~1)) 이 된다. 

    우측의 밥그릇이 된다.

     요약하면 -log(h)는 좌측, -log(1-h)는 우측이다. 


  * 주의할 것은 Linear Regression (binary classification)을 하기 위해 평균에 제곱을 하지 않는다. 

 

  - y=0 일때와 y=1일때의 각 수식을 하나의 수직으로 만들기 위해 다음 공식을 사용해 합쳐서 표현한다. 소스에서는 -y*tf.log(output)-(1-y)*tf.log(1-output) 이 된다. 

  


      y * A + (1-y) * B => y * -log(H(x)) + (1-y) * -log(1 - H(x)) => -y*log(H(x)) - (1-y)*log(1 - H(x))  => -( y*log(H(x)) + (1-y)*log(1 - H(x)) )


  - 이것을 다시 재구성하면 다음과 같다. 소스에서는 cost = tf.reduce_mean(-y*tf.log(output)-(1-y)*tf.log(1-output)) 이다.

  



Step-3) 옵티마이저

  -  코스트함수가 정해지면 옵티마이저를 설정한다. 

      경사하강법 (GradientDescent)는 cost(W)을 미분을 적용해서 W의 다음 위치를 계산하는 공식이다. 다음 위치로 이동하는 것은 Learning Rate (이동하는 Step 크기)로 정해진다.

  - W 와 b의 적정값을 계산하기 위해 비용함수를 만들었다면 학습을 통해 GradientDescent가 W와 b값을 구한다. 여기서 나온 W,b를 통해 예측을 수행한다.

  - 소스는  tf.train.GradientDescentOptimizer(Learing_Rate).minimize(cost) 이다.

  - GradientDescent Optimizer는 gradient를 계산해서 변수에 적용하는 일을 동시에 하는 함수이다. W와 b를 적절하게 계산해서 변경하는 역할을 하며, 그 진행 방향이 cost가 작아지는 쪽으로 수행한다. train을 수행하게 되면 텐서 그래프의 모든 변수의 값이 자동 변경되며 계산된다. 소스는 _, loss = sess.run([train, cost], feed_dict = feed_dict) 이다.


  - 또한 텐서를 run하기 전에 그래프에 연결된 모든 variable을 초기화해야 한다. 

  - 옵티마이저 설명 참조

  



Step-4) 가절 검증

  - Accuracy or Evaluation

  - output 은 hypothesis 가설함수로 이것을 실제 테스트를 해본다. 

  - Linear에서 x, y 데이터를 placeholder를 통해 train 시키고, 최종 W,b가 구해진 가설함수에 대해서 test 데이터를 넣어 보고 예측이 맞는지 검증한다. 

  - Linear Regression 예 (Linear Regression에 대한 이해 참조)

import tensorflow as tf

x_data = [1.,2.,3.]

y_data = [1.,2.,3.]


W = tf.Variable(tf.random_uniform([1], -100., 100.))

b = tf.Variable(tf.random_uniform([1], -100., 100.))


X = tf.placeholder(tf.float32)

Y = tf.placeholder(tf.float32)


h = W * X + b

cost = tf.reduce_mean(tf.square(h - Y))


rate = tf.Variable(0.1)

op = tf.train.GradientDescentOptimizer(rate)

train = op.minimize(cost)


init = tf.initialize_all_variables()


sess = tf.Session()

sess.run(init)


for step in range(2001):

    sess.run(train, feed_dict = {X: x_data, Y: y_data})

    if step % 100 == 0:

        print(step, sess.run(cost, feed_dict={X: x_data, Y: y_data}), sess.run(W), sess.run(b))


print('Test:', sess.run(h, feed_dict={X: 5}))




<참조>

- 김성훈 교수님 강좌 요약 블로그

- 조대협의 로지스틱 회귀 분석 블로그

- Tensorflow 유튜브 강의

- 로지스틱 회귀 이해

- 선형, 비선형 회귀 모델의 이해

- Tensorflow의 자료형 이해, 상수/변수/플레이스홀더 이해

- 선형 회귀를 Tensorflow로 구현하기

posted by Peter Note
prev 1 next